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1 IntroductionSelf-organizing neural network models, as proposed by Willshaw & von der Malsburg (1976)and Kohonen (1982), generate mappings from high-dimensional signal spaces to lower-dimensional topological structures. These mappings are able to preserve neighborhoodrelations in the input data and have the property to represent regions of high signal densityon correspondingly large parts of the topological structure. This makes them interestingfor applications in various areas ranging from speech recognition (Kohonen, 1988) and datacompression (Schweizer et al., 1991) to combinatorial optimization (Favata & Walker, 1991).The fact that similar mappings can be found at various places in the brains of humans andanimals indicates that preservation of topology is an important principle at least in natural\signal processing systems".It has been noted that the predetermined structure and size of Kohonen's model implylimitations on the resulting mappings. A number of variations have been proposed con-cerning networks with variable topology or variable number of elements. The approachof Jokusch (1990) leads to networks with rather complicated structure. In the minimum-spanning-tree network described by Kangas, Kohonen & Laaksonen (1990) the preservationof neighborhood relations is done only to a small degree due the sparse connectivity of thenetwork. The \neural gas" algorithm of Martinetz & Schulten (1991) seems to producecompact networks which preserve the neighborhood relations extremely good. It generates,however, in general networks with the same dimensionality as the input data so that no di-mensionality reduction is performed. Other models allow a variable number of elements, buthave prede�ned principal structure (e.g., rectangular array), namely the interpolative algo-rithm of Rodrigues & Almeida (1990) and the \learning expectation" method introducedby Xu (1990). A proposal to use random structures stems from Ritter (1991). Recently aninteresting approach with a network growing on a grid has been introduced by Blackmore& Miikkulainen (1992).The network presented in this contribution has a 
exible as well as compact structure,a variable number of elements, and a k-dimensional topology whereby k can be arbitrarilychosen. Recently it was demonstrated that the new model improves over Kohonen's featuremap with respect to various important criteria (Fritzke, 1993a). We acknowledge, however,that the new model owes several ideas to Kohonen's approach and that it is an extensionof his work rather than a completely di�erent formalism.First we outline the network for unsupervised learning and introduce later on the ex-tension of the model to supervised learning.2 Unsupervised Growing Cell Structures2.1 Problem De�nitionBefore we describe our network model, it seems appropriate to exactly de�ne the kind ofproblems the network is supposed to solve. In the �rst place, we have a number of n-dimensional input signals obeying an unknown probability distribution P(�). With V = Rnwe denote the vector space the input signals stem from.Our objective is to generate a mapping from V onto a discrete k-dimensional topological1
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a) k = 1 b) k = 2 c) k = 3Figure 1: Cell structures of di�erent dimensionality kstructure A. This mapping should have the following properties:� Similar input signals are mapped onto topologically close elements of A.� Topologically close elements in A should have similar signals being mapped onto them.� Regions of V where the probability density of the input vector distribution is highshould be represented by correspondingly many elements in A.The �rst two points mean that the mapping should preserve similarity relations in forwardand backward direction. If the dimensionality of A is smaller than that of V , a dimen-sionality reduction is performed. If it is in spite of that possible to preserve the similarityrelations, then the complexity of the data is reduced without loss of information. The thirdpoint means that we gain some information about the unknown probability density of theinput signals.2.2 Network ArchitectureThe initial topology of the network A is a k-dimensional simplex. For k = 1 this is a linesegment, for k = 2 a triangle and for k = 3 or higher the structure is denoted tetrahedronor hypertetrahedron. The (k + 1) vertices of the simplex are the cells (or neurons). The(k + 1)k=2 edges denote topological neighborhood relations. During a self-organizationprocess described further below new cells will be added to the network and super
uouscells will be removed. Every modi�cation of the network, however, is performed suchthat afterwards the network consists solely of k-dimensional simplices again. Some typicalstructures for di�erent values of k are shown in �g. 1.We choose hypertetrahedrons for our model because they are of minimal complexity andcan, therefore, be easily combined to larger structures. One should also note that the numberof vertices of a k-dimensional hypertetrahedron grows only linear with k, whereas, e.g., ak-dimensional hypercube has an exponentially growing number of vertices (2k). Therefore,the hypertetrahedron is a good choice even for very high-dimensional networks.2



www.manaraa.com

Figure 2: Voronoi tessellation generated by a two-dimensional cell structure with the initialtriangular topology. The dimension of the input vector space V is also two in this example.Every neuron is projected into V by drawing a circle at the position the reference vectorpoints to. Circles corresponding to topologically neighboring neurons are connected bylines.Every cell c has an n-dimensional synaptic vector wc attached. This vector may be seenas the position of c in the input vector space. We denote with w the set of all synapticvectors wi; i 2 A. A mapping �w from the input vector space V onto the network A can nowbe de�ned by mapping every input signal to the cell with the nearest position (or referencevector). More formally we write�w : V ! A; (� 2 V ) 7! (�w(�) 2 A) (1)with �w(�) the so called best-matching unit being de�ned throughkw�w(�) � �k = minr2A kwr � �k: (2)Thereby k � k denotes the Euclidean vector norm. By this V is partitioned into a number ofregions Fi (i 2 A), each consisting of the locations having a common nearest synaptic vectorwi (see �g. 2). This is known as Voronoi tessellation, and the regions are denoted Voronoiregions. In order to simplify some of the following formulas, we assume that our input spaceV is an arbitrarily large but �nite subregion of Rn. The consequence of a �nite input spaceis that all Voronoi regions are �nite. This is in general not true for those Voronoi regionsbelonging to a synaptic vector on the convex hull of w.2.3 Network DynamicsIn principle the adaptation of the synaptic vectors in our model is done as earlier proposedby Kohonen (1982):1. Determine the best-matching unit for the current input signal.2. Increase matching at the best matching unit and its topological neighbors.In Kohonen's model the strength of the adaptation is decreasing according to a coolingschedule. Moreover, the topological neighborhood inside which signi�cant changes are made3
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is chosen large at the beginning and decreases then, too. Our model follows the same basicstrategy. There are, however, two important di�erences:� The adaptation strength is constant over time. Speci�cally we use constant adaptationparameters "b and "n for the best matching unit and the neighboring cells, respectively.� Only the best-matching unit and its direct topological neighbors are adapted.These choices eliminate the need to de�ne a cooling schedule for any of the model parame-ters.In the following Nc denotes the set of direct topological neighbors of a cell c. Further-more, we de�ne for every cell c a local counter variable � c basically containing the numberof input signals for which the cell has been best-matching unit. Since the cells are slightlymoving around, more recent signals should be weighted stronger than previous ones. This isachieved by decreasing all counter variables by a certain fraction after each adaptation step.To enable this decay, the signal \counters" must be represented by real-valued variables.An adaptation step in our model can be formulated as follows1 (see also �g. 3):1. Choose an input signal � according to the probability distribution P(�).2. Locate the best matching unit s = �w(�).3. Increase matching for s and its direct topological neighbors�ws = "b(� � ws) (3)�wc = "n(� � wc) (for all c 2 Ns) (4)4. Increment the signal counter of s. ��s = 1 (5)5. Decrease all signal counters by a fraction �.��c = �� �c (for all i 2 A)If we choose small values for "b and "n, then the cells move from their initial randompositions to locations with a dynamic equilibrium between the changes in all directions.They do not stop moving completely since the adaptation parameters are not decreased (sothis is not stochastic approximation).Our objective is a structure with the synaptic vectors wc distributed according to P(�).This is achieved when every cell has the same probability of being best-matching unit forthe current input vector. We do not know P(�) explicitly, but with the local signal counterswe can compute an estimate of P(�), namely the relative frequency of input signals receivedby a certain cell.The relative signal frequency of a cell c ishc = � c=Xj2A � j : (6)1Here, and throughout the whole paper, �x = y stands for xnew = xold + y. This is to have a concisenotation for incremental changes. 4
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a) Initial Situation b) Occurrence of an inputsignal c) After adaptationFigure 3: One adaptation step for a two-dimensional cell structure. Only the best-matchingunit and its direct neighbors are adapted. The columns represent signal counter values. Thesignal counter of the best-matching unit is incremented. (Here and in following �gures weproject the network into the input vector space by drawing every cell at the position, thecorresponding reference vector points to. This is a useful technique if the input vector spacehas a dimension less or equal than three.)Eventually, all cells should have similar relative signal frequencies. A high value of hc,therefore, indicates a good position to insert a new cell since the new cell is likely to reducethis high value to a certain degree. Thus, in the following insertions are made on the basisof this criterion.Always after a �xed number � of adaptation steps we determine the cell q with theproperty hq � hc (for all c 2 A): (7)Then we look for the direct neighbor of q with the largest distance in input space. This isa cell f (see �g. 4a) satisfyingkwf � wqk � kwc � wqk (for all c 2 Nq): (8)We insert a new cell r in between q and f (see �g. 4b). This new cell is connected to theother cells in such a way that we have again a structure consisting only of k-dimensionalsimplices2 . The synaptic vector of r is initialized aswr = 0:5 (wq + wf): (9)The insertion of r leads to a new Voronoi region Fr in the input space. At the same time theVoronoi regions of the topological neighbors of r are diminished. This change is re
ectedby an according redistribution of the counter variables � c. We compute the changes of thesignal counters as2This can be achieved by, �rst, connecting r to q, f and to those common neighbors of q and f whichare part of a simplex having both q and f are vertices. Second, the original connection between q and f hasto be removed. 5
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a) Situation before an insertion. Thecolumns represent signal counter variables.The cell q has received the most input sig-nals so far. The grey lines indicate theVoronoi tessellation. b) A new cell r has been inserted and, thus,a new Voronoi region exists now. The signalcounter variables are redistributed accord-ing to the changes of the Voronoi regions.Figure 4: Insertion of a new cell.Start with a k-dimensional simplex at random positions in V = Rn.while (desired network size not reached)Perform a constant number � of adaptation steps.Insert a new cell and distribute the counter variables according toeqn. 10 - 11.Figure 5: Principal algorithm of Growing Cell Structures�� c = jF (new)c j � jF (old)c jjF (old)c j � c (for all c 2 Nr): (10)whereby jFcj is the n-dimensional volume of Fc. Finally the initial value of the new cell isde�ned as � r = � Xc2Nr �� c; (11)The redistribution of the counter variables can be seen as ascribing to the new cell as muchinput signals as it would have got if it had existed since the beginning of the process. Inthe same way the reduction of the counter variables of its neighbors can be motivated. Thebasic algorithm for the growing cell structures is shown in �g. 5. A schematic example of theprocess is shown in �g. 6. The main characteristic of the model is that several adaptationsteps are always followed by a single insertion. One can note the following feedback relationbetween the two types of action:� Every adaptation step increases the signal counter of the best matching unit andincreases thereby the chance that another cell will be inserted near this cell.6
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Figure 6: A two-dimensional cell structure grows directed by input signals stemming froma uniform distribution in a circle shaped sub-area of R2. The initial structure is a triangleof neurons with randomly initialized reference vectors. The structure is distributed by aconstant number � of input signals. Then a new cell (white circle) is inserted and connectedto the other neurons in such a way that again a structure of triangles results. This newstructure is distributed again, an other cell is inserted, etc.� Insertion near a cell c decreases both the size of its Voronoi �eld Fc and the value ofthe signal counter � c. The reduction of the Voronoi �eld makes it less probable thatc will be best matching unit for future input signals.Our simulations indicate that { under a wide range of parameter settings { the modelapproaches a state where for every cell i the probability pi that i is best-matching unit forthe next input signal according to P(�) is approximately equal. In this case the entropyS = �Xc2A pc log pc (12)is approximately maximized and, therefore, the local density of reference vectors gives agood estimate of the unknown probability density of the input vectors. The abovementionedcomparative study indicates that the Growing Cell Structures estimate unknown probabilitydistributions signi�cantly better than Kohonen's feature maps (Fritzke, 1993a).In �g. 7 some stages of a simulation are depicted. The cell structure grows, guided by theinput vectors, and �nally �nds a suitable structure to model the cloud-shaped distribution.One should note that already in early phases of the simulation the network has basicallyits �nal shape only with fewer neurons. This behavior can be described as \fractal growth"which can be observed frequently in plants, e.g. ferns. An important property of this kindof change is that we can interrupt the process at any time and still have a well-shapedstructure.Another property of our model which becomes especially evident when viewing computersimulations is that, once a certain number of cells has been created, very little movementof the reference vectors occurs. The main source of change is the insertion of new cells. It7
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a) 0 signals b) 100 signals c) 400 signals
d) 1000 signals e) 4000 signals f) 10000 signalsFigure 7: Development of a two-dimensional Growing Cell Structure. The underlying prob-ability distribution P(�) is in this case also two-dimensional and is uniform in a cloud-shapedarea. Below every sub-picture the number of already received input signals (which is thenumber of adaptation steps) is shown. The employed simulation parameters are � = 100,"b = 0:06, "n = 0:002, k = 2, � = 0:05.

8
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a) The growth process leads toa well-adapted network structure. Mostlyshort connections indicate good topology-preservation. Few synaptic vectors lie out-side the relevant circular areas. b) By removal of super
uous cells sub-structures can be formed. The positions ofthe synaptic vectors now indicate a nearlyperfect modeling of the probability distribu-tion and there are only short connections.Figure 8: A Growing Cell Structures network with 400 cells has adapted to the probabilitydistribution of the previous example. Simulation parameters: "b = 0:06, "n = 0:002,� = 100, � = 0:05, and � = 0:09 (for b only).is this property which facilitates the extension of the model to a new supervised learningmethod as will be demonstrated in section 3.2.4 Removal of CellsIn some cases, especially if P(�) consists of several separate regions of positive probabilitydensity, a still better modeling can be achieved by removing "super
uous" cells. A cell canbe regarded as super
uous if it has a position (synaptic vector) in a region of V with verylow probability density. In general, P(�) is unknown, but we can relate the relative signalfrequency of a cell to the size of its \receptive �eld" (Voronoi �eld) to get a local estimate.Speci�cally, one can note that ~pc = hc=jFcj (13)is a local estimate of the probability density near wc. By periodically removing cells withvalues of ~p below some threshold � we can model even structured distributions very accu-rately. Fig. 8 shows the simulation results for such a probability distribution without andwith removal of neurons.2.5 Approximation of the Voronoi RegionsThe computation of the Voronoi tessellation is very di�cult for dimensions n > 2. Thus wereplaced the Voronoi region Fc in a �rst approach by an n-dimensional hypercube with aside length equal to the mean length �lc of the edges emanating from c. Instead of fc = jFcjwe took ~fc = (�lc)n; (14)with �lc computed by �lc = 1=card(Nc) Xi2Nc kwc � wik: (15)9
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Although the estimation of the probability density is not anymore as accurate as before,it seems to be su�cient to reliably identify super
uous neurons. However, the appropriatevalue for the threshold depends strongly on the probability distribution. The reason forthat is that a probability distribution which is non-zero in a large area of the input vectorspace has a lower density than a distribution which is concentrated more locally. But if oneuses instead of ~p the normalized value p̂, de�ned asp̂ = ~pXc2A ~fc; (16)which is computed by multiplying ~p with the total volume of all hypercubes, one getssu�cient independence. A threshold value of � = 0:09 is then appropriate in most cases.The check whether a cell i has a value p̂i < � is performed after each insertion, and thecells ful�lling the condition are removed. Also the simulation leading to �g. 8b) has beenperformed with this method.One should note, however, that the choice of an n-dimensional hypercube is only ap-propriate if the underlying data indeed spans the n-dimensional space. If, on the otherhand, the data stems from a lower-dimensional subspace of Rn, it might be better to use ahypercube of that dimensionality.To illustrate the point, let us consider an extreme example. Assume that our inputdata is 100-dimensional (which is not uncommon for some real problems), but stems froma two-dimensional sub-manifold of R100 (what we do not know). We might take a two-dimensional network to be able to visualize the data (see section 2.7). If now for one of ourcells the mean edge length shrinks by �ve percent, then the volume of the corresponding100-dimensional hypercube collapses to less than 0.6 percent of its previous size. Obviously,this does not re
ect very well the change of the \receptive �eld" of the cell. In this casetaking two-dimensional hypercubes would have been more appropriate.From the above it should be evident that it would be very helpful to know the true di-mensionality of the data, meaning the smallest dimensionality t, such, that a t-dimensionalsub-manifold of V can be found containing all (or most) input data. Then t-dimensionalhypercubes could be used to estimate the size of the Voronoi regions in our model. Unfortu-nately, it is in general di�cult to �gure out the value of t, especially because the mentionedsub-manifold does not have to be linear but could be arbitrarily twisted (e.g. a curved sur-face in R3). Therefore, even a principal-component analysis of the data does in general notreveal their true dimensionality, but gives only (or at least) an upper bound.As long as there is no simple method to determine the true data dimensionality t, onehas to de�ne an estimate ~t of it. In the following we give some general rules for choosingsuch an estimate which do work well for all problems we encountered so far:� Always set ~t � n.� If the di�erent components of the input vectors are known to be stochastically inde-pendent from each other use ~t = n.� If there are known dependencies among the components set ~t to the number of inde-pendent variables. 10



www.manaraa.com

� Always set ~t smaller or equal to the number of input vectors. This rule applies onlyto the rather unusual case that the total number of vectors is smaller than theirdimensionality n.� Finally one can perform a principal component analysis of the data. Then ~t shouldbe set to the number of principal eigenvalues of the covariance matrix of the data.However, in most cases it is not necessary to do the principal component analysis sinceour method is not very sensitive to the choice of ~t. The only case one should avoid is,to choose a value of ~t which is much too high. This can happen only if the data is veryhigh-dimensional and there are strong dependencies among the components. In such a caseit can happen that most insertions occur in one region of the structure. This is due to thefact that a newly inserted cell then gets attributed nearly all the signals of its neighborsbecause the change of their Voronoi �elds is overestimated (see above). A simple remedyfor this problem is to choose a lower value for ~t and to perform another simulation.In conclusion, we choose in the following in each case a value for ~t and approximate thevolume of the Voronoi regions by ~fc = (�lc)~t (17)with �lc being the mean edge length (see eqn. 15). It should be stressed again, however, thatthe choice of ~t seems not at all to be a critical step. For a given set of data usually manydi�erent estimates work well.2.6 E�cient Manipulation of High-dimensional TopologiesThe implementation of k-dimensional Growing Cell Structures is somewhat more compli-cated than the implementation of the Kohonen feature map (for which usually a rectangulararray of processing units is chosen). Therefore, it seems appropriate to give some hints howthis can be done with relatively small e�ort.Any implementation of the model must support the two structural update operations:� Insertion of a neuron� Deletion of a neuronThese operations have to be performed such that the resulting structure consists exclusivelyof k-dimensional hypertetrahedrons again.The general structure of the network can be represented as an undirected graph whichis a standard data type consisting of nodes and of edges between pairs of nodes.3 The nodescorrespond to neurons and the edges to topological neighborhood relations. Although such adata structure is already su�cient in principle, a considerable search e�ort is needed to makeconsistent update operations. The problem is that the removal of a neuron might requirethat also other neurons and connections are removed to make the structure consistent again.Simple heuristics as, e.g.,3Our current implementation of the model is based on LEDA (see Mehlhorn & N�aher, 1989), a publiclyavailable library of data types and algorithms. LEDA contains in particular a very elaborated data type\graph". 11
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a) Growing Cell Structures. The node d isto be removed. This is done by removingthe adjacent edges and the node itself. b) Structure after removal of node d. Theedges ab and ce are not part of any triangleanymore. The structure is inconsistent.Figure 9: Simple heuristics for cell removal can lead to inconsistent structures.To remove a node remove all neighboring connections and the node itself.do not work properly as is shown in �g. 9. The key idea to solve this problem is to changethe level of observation from nodes and connections to hypertetrahedrons. For this purposewe keep track of all the hypertetrahedrons the current network consists of. Technically,a new data type \simplex" is created, an instance of which contains the set of all nodesbelonging to a certain hypertetrahedron. Furthermore, with every node we associate theset of those hypertetrahedrons, the node is part of. The two update operations can now beformulated as follows:� Insertion: A new node r is always inserted by splitting an existing edge qf . The noder has to be connected with q, f , and with all common neighbors of q and f . Alsothe hypertetrahedrons have to be updated. Each hypertetrahedron h containing bothq and f (in other words the edge being split) is replaced by two hypertetrahedronseach containing the same set of nodes as h except that q respectively f is replaced bythe new node r. Finally the original edge qf is removed. The new hypertetrahedronshave to be inserted in the sets associated with their participating nodes.� Deletion: To delete a node, it is necessary and su�cient to delete all hypertetrahedronsthe node is part of. This is done by removing the hypertetrahedrons from the setsassociated with their nodes. Edges the ending nodes of which have no common hyper-tetrahedron are removed, too, and the same is done with nodes having no more edges.This strategy leads to structures with every edge belonging to at least one hyperte-trahedron and every node to at least one edge. Therefore, the resulting k-dimensionalstructures are consistent, i.e. contain only k-dimensional hypertetrahedrons.In �g. 10 it is demonstrated that the problematic example of �g. 9 is now handled correctly.2.7 Network Visualization for High-dimensional Input DataAn important property of Kohonen's feature map is the ability to project high-dimensionalinput data onto a two-dimensional, usually rectangular, grid. This makes a visualizationof complex data possible, e.g., speech data (Kohonen, M�akisara & Saram�aki, 1984) or evenhigh-dimensional symbolic descriptions of objects (Ritter & Kohonen, 1989).12
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a) Growing Cell Structures. The node d is tobe removed and consequently also those tri-angles (two-dimensional hypertetrahedrons)in which d participates. b) Structure after removal of d and the tri-angles d participated in. The structure con-sists only of triangles again and is, thus, con-sistent.Figure 10: Correct removal through introduction of additional structural informationThe Growing Cell Structures generate less regular networks. In the two-dimensionalcase the network consists of a number of connected triangles, possibly also of several suchnetworks if removal of cells has been performed. By construction the network is two-dimensional but it is not obvious how to embed the network into the plane to visualize it.On the other hand, the method of projecting the network into input vector space allows avisualization only for input vector dimensions up to three.We found, however, a method to embed a k-dimensional network (k 2 f2; 3g) into thek-dimensional space. This makes it possible to visualize networks for arbitrarily high vectordimensions as long as the network dimension is low enough.Our method employs a simple physical model to construct the k-dimensional embeddingduring the self-organization process. In the following we assume k = 2. The generalizationto three dimensions is straightforward.� Each cell in the network is modelled by a disc made of elastic material.� The diameter of each disc is d. Therefore, two discs the centers of which have adistance d touch each other. If the distance gets smaller than d, the discs repel eachother.� Each neighborhood connection is modeled by an elastic string. Two connected, butcurrently not touching, discs are pulled towards each other.� All discs are positively electrically charged and repel each other.At the beginning of the self-organization process the three discs are positioned in theplane such that they do not overlap. Each time a new cell is inserted, the position of itscorresponding disc is interpolated from the neighbors in the same way the reference vectoris interpolated. It may occur that now overlaps exist. Therefore, after every insertion wecompute for every disc the sum of forces acting on it and move it accordingly. This is donein an asynchronous manner in order to avoid oscillation e�ects.We did not try to build a physically accurate model. The discs have no associatedmass and forces lead to proportionally large motions. For the forces we experimentallydetermined the following values.Repelling force fb of two discs with center distance e:13
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a) Projection into input vector space. Shortly afterthe start of the simulation all cells are connectedsince no deletions took place yet. b) Embedding into the two-dimensional space
c) Projection into input vector space. Deletion ofsuper
uous cells has led to two separate structures. d) Embedding into the two-dimensional space. The twosub-structures can be recog-nized easily.Figure 11: Example for the embedding method. The probability distribution is uniform intwo separated cubes. The network is two-dimensional. Figure a) and b) as well as �gurec) and d) show the same state of the simulation, respectively. Through the embedding it iseasily possible to detect the splitting of the network as can be seen from �g. d).fb = 8>>>>><>>>>>: 0 if 3d< ed=5 if 2d< e� 3dd=2 if d < e� 2dd if 0 <e� d0 if 0 = e (18)Attracting force fn of two connected discs with center distance e:fn = ( 0 if e < d(e� d)=2 (otherwise) (19)These two forces have to be balanced against each other. We usually multiplied fb by0.2 and fn by 1.0. In some cases, however, di�erent values might be more appropriate.An example of the results obtained by the described method is shown in �g. 11. A14
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g e t h zd d o h a w i l o eanimal o h u o o a g f d o c g i r b cv e c s w w l o o l a e o s r oe n k e l k e x g f t r n e a wsmall 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0is medium 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0big 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 12 legs 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 04 legs 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1has hair 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1hooves 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1mane 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0feathers 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0hunt 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 0likes run 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0to 
y 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0swim 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0Table 1: Animal names and binary attributes (after Ritter & Kohonen, 1989): If an attributeapplies for an animal the corresponding table entry is 1, otherwise 0.still larger bene�t can be gained by having the embedding when the input data is so high-dimensional that we can not visualize the network in input vector space anymore. This isin many real applications the case since often we have data consisting of many more thanthree components.Ritter and Kohonen have introduced an illustrative example of high-dimensional data. Itconsists of the description of 16 animals by binary property lists (see table 1). The thirteenproperties together with a 1-out-of-n coding of the name of the animal led to 29-dimensionalvectors. These vectors were fed into a two-dimensional Kohonen feature map consisting of10 � 10 neurons. After the end of the self-organization process it was tested where eachof the input vectors was represented on the map. It came out that Kohonen's methodhad found an interesting projection positioning similar animals generally at neighboringlocations on the map. It was, e.g., possible to partition this \semantotopic" map into threeconnected regions containing all birds, herbivores, and carnivores, respectively (see �g. 12).We tested the Growing Cell Structures with the same data and constructed during theself-organization a two-dimensional embedding of the network with the method just de-scribed. Two di�erent stages of a speci�c simulation are shown in �g. 13. When comparingthe results with those of Ritter and Kohonen the main advantage of our model lies in thefact that it automatically �nds meaningful partitions of the data, while Ritter and Kohonenhad to identify those partitions by themselves.In general this technique makes it possible to visualize and cluster high-dimensionaldata which might be useful in many application areas as e.g. process control or patternrecognition. 15
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Figure 12: Kohonen feature map representing the animal data from table 1. For everyanimal the cell is shown which is best-matching unit for the corresponding (feature) vector.Animals with similar properties are represented in neighboring locations of the map, asis shown by the (manually added) partition into three regions (after (Ritter & Kohonen,1989)).2.8 Alternative Insertion CriteriaOne goal of our model, as described so far, is to estimate the unknown probability densityof the input signals with the local density of reference vectors in input vector space. Thisgoal would be achieved perfectly if every neuron had the same chance that a randomlydrawn input signal was mapped onto it. To approach this goal, we introduced a local signalcounter for each neuron and inserted new neurons near existing neurons with high signalcounter values.It has to be pointed out that there is an underlying general principle in this methodwhich can be exploited to achieve quite di�erent goals than estimation of the probabilitydensity. The principle is to insert new neurons in such a way that the expected value of acertain error measure which will be called resource4 in the following becomes equal for allneurons. Appropriate resources must have the property that the insertion of a new neuronr near an existing neuron q reduces the expected value of the resource of q. Under someadditional conditions for the resource which can be characterized as \well-behavedness"and which are very often ful�lled, we can expect that the strategy of inserting new neuronsnear neurons with high resource values will lead to the desired result that all neurons havesimilar expected resource values.One interesting example of an alternative resource is the quantization error generatedby a neuron. This is simply the accumulated squared distance between the reference vectorof this neuron and all input signals being mapped onto the neuron. Instead of incrementing4This denotation stems from the idea that that the accumulated resource values cause insertion (orgrowth) and, therefore, play a nutrition-like role for the network.16
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cowa) The birds have been divided from themammals. Among the birds the peacefulones and the birds of prey are at di�erentpositions. Also in the mammal cluster simi-lar animals can generally be found at neigh-boring positions. b) The mammal cluster has been split intothree other cluster. One contains the largeand peaceful animals (horse, zebra, cow),the second contains animals which like torun (tiger, lion, wolf, dog) and the thirdcluster contains animals which like to hunt,but avoid excessive running (cat, fox).Figure 13: Semantotopic Growing Cell Structures. The data used stems from Ritter andKohonen (see table 1). The data is ordered as by Kohonen's model but beyond that theability of the Growing Cell Structures to form sub-structures makes it possible to partitionthe data in clusters of mutually similar items.
17



www.manaraa.com

a) The original version of the Growing CellStructures leads to a solution with approxi-mately �fty percent of the reference vectorsin the 10 � 10 �eld as well as in the 1 � 1�eld. The mean square error is 0.00095. b) The error-minimizing variant of theGrowing Cell Structures positions most ofthe reference vectors in the 10 � 10 �eld.The mean square error is 0.00054.Figure 14: Minimization of quantization error. The probability distribution consists of a10� 10 �eld and a 1 � 1 �eld. Fifty percent of the input signal come from either of theseareas. After letting the networks grow until size 100 the mean square error was determinedby 1000 test signals.the signal counter of the best-matching unit as we did earlier, we change it through�� s = k� � wsk2 (20)which e�ectively replaces eqn. 5. By using this measure as insertion criterion new neuronsare inserted not anymore near those neurons getting the most input signals but rather nearthose neurons the input signals of which are very di�erent from their reference vectors.The resulting network structures di�er especially for probability distributions with a non-uniform probability density (see, e.g., �g 14). Recently this particular insertion criterionhas been used to develop a new method for vector quantization (see Fritzke, 1993b). Forthis application the consistency requirements for the structures have been loosened by al-lowing also separate cells (without any neighbors) to exist. The method is able to generatecodebooks of exceptionally good quality.Another useful example for the resource is discussed in the next section where we report�rst results on a new supervised network based on the Growing Cell Structures.18
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3 Extension to Supervised Learning3.1 MotivationSelf-organizing networks perform unsupervised learning. Frequently they generate orderedmappings of the input data onto some low-dimensional topological structure. In other casesthey are used to partition the input data into subsets (or clusters) such that data itemsinside one subset are similar but items from di�erent subsets are dissimilar.In many situations, however, one has given input as well as corresponding output data.The problem is then to learn the underlying relation from a limited number of examples.For sake of concreteness let us in the following assume that our data consists of a numberof pairs (�i 2 Rn; �i 2 Rm)whereby �i is the input and �i is the desired output of the i-th pair.Supervised learning methods are in these cases used to train networks to generate thedesired output when they are presented with the input part of a speci�c data pair. Althoughthis is not very useful per se, it is hoped that after �nishing the training the network willbe able to generate \reasonable" output values also for unknown input data. This is oftendenoted as generalization. It is a commonplace today that to achieve good generalization thenumber of free parameters of the network must be kept small. Otherwise there is the dangerof \over-�tting" which denotes a situation where the network still improves on the trainingdata, but already has a decreasing performance on the test data. Typical applications areasfor supervised learning include pattern classi�cation or function approximation.In the following we demonstrate how the self-organizing model we presented in thispaper can be extended to a supervised learning procedure. The result is a method whichresembles the well-known radial basis function network (RBF) but eliminates some seriousdrawbacks of this approach.3.2 Radial Basis FunctionsRadial Basis Function networks (Moody & Darken, 1988) consist of a layer L of units withGaussian activation functions5 and an output layer of m linear summation units (see �g.15). We assume again data pairs (�i 2 Rn; �i 2 Rm) of input and desired output.Each Gaussian unit c has an associated vector wc 2 Rn indicating the position of theGaussian in input vector space and a standard deviation �c. For a given input datum � theactivation of a unit c is described byDc(�) = fc(�)Pi2L fi(�) (21)whereby fc(�) = exp(� k� � wck2�2c ): (22)5In general every activation function could be used which is only in a limited and local area of the inputvector space considerably di�erent from zero. 19
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Figure 15: Radial basis function network. An n-dimensional input signal i is directed to alayer of units with a Gaussian activation function. This layer is via weighted connectionslinked to the output layer of linear summation units.Eqn. 21 realizes a normalization (proposed by Moody and Darken) such that alwaysXi2LDi(�) = 1 (23)holds. Consequently, every input signal causes in summa the same activation. From theGaussian units to the output units exists a complete layer of modi�able weights. The overallgoal is to set the free parameters of the network such that the output units produce suitablevalues for given input data. The free parameters in this case are positions and widths ofthe Gaussians as well as the weights to the output units.The usual procedure for training such a network consists of two consecutive phases, anunsupervised and a supervised one:1) The Gaussians have to be positioned in the n-dimensional input vector space. Moodyand Darken propose the k-means clustering algorithm for this purpose. Moreover, foreach Gaussian the standard deviation has to be de�ned. Moody and Darken reportgood results for using the distance to the nearest other Gaussian.2) The layer of modi�able weights has to be trained to produce the desired values at theoutput units. Commonly the delta rule (also called least mean square rule) is used,but also any conventional method for solving a linear system would do.Although the described networks are reported to be computationally rather e�cient(compared e.g. with backpropagation), they have some important drawbacks. First, onehas to de�ne the number of Gaussians a priori. This leads to similar problems as the\number-of-hidden-units"-dilemma for multi-layer-perceptrons since it is very di�cult toestimate an appropriate number of units. The second problem stems from the fact thatthe k-means clustering algorithm positions the Gaussians at those locations in input vectorspace where many input vectors can be found. In some cases this might be not at all20
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Figure 16: Classi�cation problem with two classes: Given the shown example points �nd agood method to map all points in the square to one or the other class. (Alternatively onecould also consider rejection of points, for which neither class seems to be appropriate.)optimal. Consider a simple classi�cation problem with two classes where most of the datavectors lie in two well-separated clusters, but the remaining vectors of both classes arescattered in several small clusters which are pretty close to each other (see �g. 16). In thiscase k-means would position most of the available Gaussians on the two large clusters. Amuch better choice, however, would be to cover the large clusters with only few Gaussians(having a large standard deviation) and to use the rest to cover the more complicated regioncontaining the small clusters. Generally, relatively more Gaussians should be positioned atthose locations where it is di�cult to di�erentiate between the classes. These locations,however, are not known a priori.3.3 Supervised Growing Cell StructuresIn a fairly obvious way one can extend the Growing Cell Structures to a supervised radialbasis function network (see �g. 17):� For every cell c the reference vector wc de�nes the center of a Gaussian activationfunction.� The standard deviation �c of the Gaussian is de�ned as the mean length of all edgesemanating from c (this is comparable to the heuristic proposed by Moody e.a).� A number of m linear output units are de�ned and the Gaussian units are completelyconnected to them by weighted connections. This can be realized by associating withevery cell c an output weight vector woutc = (w1c; w2c; : : : ; wmc). Thereby, wic denotesthe weight of the connection from cell c to output unit i.21
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Figure 17: Supervised Growing Cell Structures network. In contrast to the conventionalradial basis function network there exist topological neighborhood relations (gray arrows)among the Gaussians. They are used to de�ne the radius of the Gaussian as well as tointerpolate the position of newly created Gaussians from existing ones.So far this is very similar to a standard RBF-network. The di�erence, however, lies inthe training strategy and can be characterized by the following two points:� Instead of having a two-phase scheme, the self-organization of the RBF-layer and thesupervised adaptation of the weighted connections are performed in parallel.� The classi�cation error occurring for the training data is used to determine where toinsert new cells (resp. Gaussians).The parallel training is made possible by the earlier mentioned property of our algorithmthat existing weight vectors are moved (changed) only very little. Thus, it makes sense totrain the weights to the output units right from the beginning of the growth process.We have to extend the described algorithm for unsupervised learning accordingly. Inparticular we now do one learning step with the delta rule after every adaptation step.Assuming our data consists of pairs (� 2 Rn; � 2 Rm) of input vector and desired outputvector. We compute the activation of Dc of every cell c asDc(�) = exp(� k� � wck2�2c ) (24)We perform no normalization. This has the advantage that \outliers" do not activate anyGaussian very much and can, therefore, be identi�ed easily. If we would normalize, onthe other hand, also input signals which are arbitrarily far away from all Gaussians canactivate them considerably. To support this position one could argue that it is somewhatquestionable to \generalize" over patterns which are very di�erent from all patterns seenduring training.The activation of the m output units is computed byoi =Xc2AwicDc (for all i 2 f1; � � � ; mg) (25)22



www.manaraa.com

The change of weights (according to the delta rule) is de�ned by�wic = �(�i � oi)Dc (for all i 2 f1; � � � ; mg) (for all c 2 A); (26)whereby � is the learning rate.Finally, we update the resource variable of the current best-matching unit s by addingto it the overall squared error between actual output o = o1; � � � ; om and desired output� = �1; � � � ; �m: ��s = k� � ok2 (27)This replaces eqn. 5 where we incremented the resource variable � respectively eqn. 20where we summed up the quantization error.If the current task is a classi�cation problem (as opposed to a continuous input/outputmapping), we can alternatively use the classi�cation error. In this case the resource wouldbe updated according to ��s = ( 0 if � is classi�ed correctly1 otherwise (28)Networks built with the classi�cation error as insertion criterion tend to be still verysmall when they start classifying all training examples correctly. This is due to the fact thatnew cells are only inserted in those regions of the input vector space where still misclassi�-cations occur. On the other hand, learning does practically halt when no misclassi�cationsoccur anymore even if the \raw" mean square error of the network is still rather large6 . Insome cases this can lead to poor generalization for unknown patterns. It, therefore, seemsadvisable to use a weighted combination of classi�cation and mean square error. It has tobe pointed out, however, that this is merely a matter of �ne-tuning. From our experiencethe networks generate usually satisfying mappings in all areas where training vectors areavailable, no matter which combination of the two kinds of error is used.Whenever a new cell r is inserted, it gets a vector woutr = (w1r; w2r; : : : ; wmr) of weightedconnections to the m output units. Instead of initializing these vectors with zero or randomvalues, they are obtained through a redistribution very similar to that used for the resourcevariable of the new cell (compare eqn. 10 and 11):�woutc = jF (new)c j � jF (old)c jjF (old)c j woutr (for all c 2 Nr): (29)whereby jFcj is the n-dimensional volume of Fc. Finally, the initial output weight vector ofthe new cell is de�ned as woutr = � Xc2Nr �woutc ; (30)In doing this redistribution the new cell is given output weights such, that it will activatethe output units in a way similar to its \mean" neighbor. Since the neighboring Gaussians6This particular behavior is also a characteristic of the original perceptron learning rule introduced byRosenblatt (1958). 23
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overlap considerably, the overall output behavior of the network is not changed very much.In future adaptation steps, however, the new unit can develop di�erent weights and con-tribute so to better error reduction in this area of the input vector space. The completealgorithm for Supervised Growing Cell Structures is shown in �g. 18.3.4 Simulation ExamplesExample 1: A simple classi�cation problemWe used the described supervised version of the Growing Cell Structures to construct aclassi�er for the data shown in �g. 16. The network was chosen to be two-dimensional.Since the data had to be classi�ed into two classes, two output units were used. Thecombined growth and learning process was continued until the MSE for the training datafell below some bound. The resulting network (see �g. 19a) was used to map 200 � 200points inside the the square region to either one or the other class (see �g. 19b).One can observe that the size of the triangles and, therefore, the standard deviation ofthe Gaussians is considerably smaller in the region with the four small clusters (upper right).The reason is that the classi�cation in this area is di�cult and, therefore, many classi�cationerrors occur during training. This leads to insertions in this area. The resulting decisionregions demonstrate that the �nal network classi�es all training vectors correctly. Moreover,it seems to do a rather good job on classifying the other points inside the depicted region.Example 2: The Two SpiralsA well-known benchmark in the connectionist community is the so called two-spiral prob-lem. It consists of 194 two-dimensional vectors lying on two interlocked spirals which arethe classes in this case (see �g. 20a). The task is to construct a classi�er being able to dis-tinguish between the two classes. This benchmark is interesting since, due to the low datadimensionality, it is possible to visualize the decision regions of the network during and aftertraining. Moreover, it seems to be a rather di�cult task for typical feed-forward networks,e.g., multi-layer perceptrons with sigmoidal activation functions. Lang & Witbrock (1989)were unable to solve the problem with a standard multi-layer network and had to use addi-tional connections to achieve convergence. Fahlman & Lebiere (1990) used a constructivealgorithm called Cascade-Correlation to solve the problem. The resulting decision regionsof this network are shown in �g. 20b. One can note that the Cascade-Correlation algorithmis able to learn the training data, but the decision regions show several artifacts. In manycases points between two training vectors of a speci�c class are classi�ed as belonging tothe other class. This occurs especially in the outer parts of the spirals where the exam-ple patterns of one class are further apart from each other than from the representants ofthe other class. The resulting \cuts" in the spiral can be interpreted as poor generaliza-tion. In absence of other evidence it seems more natural to assume that those intermediatepoints belong to the same class. The decision regions produced by the network of Lang andWitbrock look similar.Baum & Lang (1991) proposed a constructive method and also tested it with the two-spiral problem. Their approach employs an \oracle" that can tell for every point in theplane the desired class. Queries to the oracle are then used to position the hyperplanes24
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Initialize cell structure A with one k-dimensional simplex at randompositions in V = Rn.Create m linear output units.Create a weighted connection wic from each cell c 2 A to each output uniti; (i 2 f1; : : : ; mg)Associate every cell (vertex of the simplex) with a Gaussian function.while (classi�cation error not low enough)repeat � timesChoose I/O-pair (�; �) 2 (Rn �Rm) from training dataDetermine best-matching unit s for �.Increase matching for s and its direct neighbors.Compute activation Dc for every cell c 2 A (see eqn. 24).Compute the vector o = (o1; : : : ; om) of all output unit activations(see eqn. 25).Perform one delta-rule learning step for the weights (see eqn. 26)Increase resource variable of s through ��s = k� � ok2Determine cell q with maximum resource valueInsert a new cell r between q and the direct neighbor f withmaximum distance in input vector spaceRedistribute resource values and weight vectors among r and itsdirect neighbors according to eqn. 10 - 11 and 29 - 30, resp.Figure 18: Supervised Growing Cell Structures algorithm25
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a) �nal network b) decision regionsFigure 19: Supervised Growing Cell Structures. Network and decision regions for the datashown in �g. 16 Simulation parameters: � = 240, "b = 0:1, "n = 0:006, k = 2, ~t = 2,� = 0:005, � = 0:15, no removal of cells.
a) two spiral problem b)decision regions for Cascade-Correlation(reprinted with permission from Fahlman& Lebiere, 1990)Figure 20: Two spiral problem and learning results of a constructive network.26
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network model number of epochs reported inBackpropagation 20000 Lang & Witbrock (1989)Cross Entropy BP 10000 Lang & Witbrock (1989)Cascade-Correlation 1700 Fahlman & Lebiere (1990)Growing Cell Structures 180 (this paper)Table 2: Training epochs necessary for the two spiral problemcorresponding to certain hidden units. An explicit test set of 576 points has been de�nedconsisting of three points between each pair of adjacent same-class training points. There-fore, training and test points together form two spirals with a four times higher point densitythen the training set alone. For their best model Baum and Lang report an average of 29errors on the test set.We generated a two-dimensional Growing Cell Structure to solve the two-spiral problem.The network and the corresponding decision regions are shown in �g. 21. In this case thedecision regions form two well-separated spirals with very smooth borders. In fact, thedecision regions exhibit a strong similarity to the oracle de�ned by Baum and Lang. Datapoints in between training vectors of one class are mapped onto that class and, therefore,the network makes no errors at all on the mentioned test set of Baum and Lang. Even inthe outer regions of the spiral the decision regions follow the example vectors accurately.The local density of cells is rather uniform and does not follow the density of the trainingvectors which is higher near the center of the spirals. This is not surprising since near thecenter fewer units per training point are needed to facilitate correct classi�cation.For every learning method an important practical aspect is the number of pattern pre-sentations necessary to achieve a satisfying performance. In case of a �nite training set acommon measure is the number of cycles through all training patterns, also called epochs.We list in table 2 the number of epochs for the two-spiral problem for some earlier methodsand for our approach. As can be seen the number of epochs required by the new method isabout two orders of magnitude smaller than for standard backpropagation and nearly oneorder of magnitude smaller than for Cascade-Correlation.Example 3: Speaker Independent Vowel RecognitionTo explicitly investigate the generalization capability of our model, we performed experi-ments with a vowel recognition problem. The data used was collected by Deterding (1989),who recorded examples of the eleven steady state vowels of English spoken by �fteen speak-ers for a speaker normalization study. The vowel data (as well as the two-spiral data) iselectronically available from the Carnegie-Mellon University connectionist benchmark col-lection (see Fahlman, 1993).(An ASCII approximation to) the International Phonetic Association (I.P.A.) symboland the word in which the eleven vowel sounds were recorded is given in table 3. The wordwas uttered once by each of the �fteen speakers, 7 of whom were female and 8 male.The speech signals were low pass �ltered at 4.7kHz and then digitized to 12 bits with27
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a) �nal network with 145 cells b) decision regionsFigure 21: Performance of the Growing Cell Structures on the two-spiral benchmark. Sim-ulation parameters: � = 240, "b = 0:1, "n = 0:006, k = 2, ~t = 2, � = 0:005, � = 0:15, noremoval of cells.
vowel word vowel wordi: heed O hodI hid C: hoardE head U hoodA had u: who'da: hard 3: heardY hudTable 3: Words used in recording the vowels (from Robinson, 1989)28
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ectioncoe�cients were used to calculate 10 log area parameters, giving a 10 dimensional inputspace. A general introduction to speech processing and an explanation of this techniquecan be found in e.g. Rabiner & Schafer (1978). Each speaker, thus, yielded six frames ofspeech from eleven vowels. This gave 990 frames from the �fteen speakers.Robinson used this data in his thesis (Robinson, 1989) to investigate several types ofneural network algorithms. He used 528 frames from four male and four female speakersto train the networks and used the remaining 462 frames from four male and three femalespeakers for testing the performance.The classi�ers he examined were single-layer perceptrons, multi-layer networks withsigmoidal, Gaussian, and quadratic activation functions, a modi�ed Kanerva model, radialbasis networks, and also a conventional method, the nearest neighbor classi�er. Due to thelimited computational facilities available to Robinson, he did only one run for each of thedi�erent architectures. Every run was continued for about 3000 epochs (Robinson, 1993).To get comparable results, we trained several Growing Cell Structure networks withthe same data as Robinson and thereafter used his test data to evaluate the generalizationcapabilities of the networks. Since the input vector dimension was high-dimensional (10),we used also networks of a somewhat higher dimension than in the previous examples.The results of Robinson and our results are shown in table 4. For easier comparison thepercentage of correctly classi�ed test patterns is shown graphically in �g. 22. It is evidentfrom the simulations that our approach has the best results of the considered methods.The networks had to be trained only for about 80 epochs which compares rather well tothe other methods. The ratio 3000=80 = 37:5 is also approximately along the lines of oursimulations for the two-spiral problem if one compares the number of epochs needed forcross entropy backpropagation and for our model (see table 2).29
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Classi�er number of hidden units correctly classi�ed percent correctSingle-layer perceptron - 154 33Multi-layer perceptron 88 234 51Multi-layer perceptron 22 206 45Multi-layer perceptron 11 203 44Modi�ed Kanerva Model 528 231 50Modi�ed Kanerva Model 88 197 43Radial Basis Function 528 247 53Radial Basis Function 88 220 48Gaussian node network 528 252 55Gaussian node network 88 247 53Gaussian node network 22 250 54Gaussian node network 11 211 47Square node network 88 253 55Square node network 22 236 51Square node network 11 217 50Nearest neighbor - 260 563-dimensional GCS 154 309 673-dimensional GCS 165 285 623-dimensional GCS 158 282 615-dimensional GCS 135 306 665-dimensional GCS 196 307 66Table 4: Test results on vowel recognition problem. The table shows the network size, thenumber of correctly classi�ed test patterns (out of 462), and the corresponding percentage.The upper box shows the results reported by Robinson in his thesis (Robinson, 1989). Hegot the best classi�cation rate for the nearest neighbor method. The lower box shows theresult of several nets generated by the Growing Cell Structures method. All of them havea higher rate of correctly classi�ed test patterns than the nearest neighbor method (and allthe other models examined by Robinson). We tried networks of dimensionality three and�ve. The parameter ~t was set equal to the network dimension in each case. The second runwith a �ve-dimensional network was continued very long to see whether over-training e�ectscould be produced which was not the case in that simulation. Also the di�erent choices for~t did not seem to in
uence the outcome of the algorithm very much.30
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4 DiscussionIn the �rst part of the paper we introduced a new self-organizing network model. It hasthe following advantages over existing models:� The network structure is determined automatically from the input data.� The network size has not to be prede�ned. Instead, the growth process can be con-tinued until a performance criterion is met.� All parameter of the model are constant. It is, therefore, not necessary to de�ne adecay schedule as in other models.� The insertion of new units can be in
uenced such that the generated network esti-mates the probability density of the input signals, minimizes the quantization erroror pursues still other goals.� Since the �nal structure depends on the input data it can be used for data visualizationand for clustering. In contrast, most other models have a �xed structure which doesnot provide any information of that kind.In the second part of the paper we developed a combination of the self-organizing net-work with the radial basis function (RBF) approach. It provides a number of improvementsover current network models with localized receptive �elds (and also some other models):� Number, diameter and position of RBF units are determined automatically througha growth process which can be stopped as soon as the network performance is goodenough.� Since positioning of RBF units and supervised training of connection weights is per-formed in parallel, the current classi�cation error can be used to determine where toinsert new RBF units. Previous approaches can only rely on clustering algorithmswhich often fail to �nd good positions for the RBF units with respect to classi�cationaccuracy.� The networks are relatively small and generalize very well.� The necessary number of training epochs seems to be one to two orders of magnitudesmaller than for other approaches.Although the results obtained so far are very promising, it is necessary to investigate theperformance of the network for larger problems than the ones presented here. Furthermore,it would be an improvement if one could �nd ways to automatically choose some of thoseparameters which still have to be set by the user. An interesting goal would be a modelwith no parameters except the properties of the desired classi�er. This goal is, of course,still very distant but we hope that the proposed methods are a step in the right direction.AcknowledgementsThe author likes to thank Scott Fahlman for the permission to reproduce �gure 20b andfor maintaining the CMU Benchmark Collection.31
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NotationA Growing Cell Structures network, also denotes set of cells in the networkk dimensionality of the Growing Cell Structures network AV n-dimensional input vector spacen dimensionality of Vwc n-dimensional reference (synaptic, weight) vector of cell cw set of all reference vectors for cells in A�w mapping V ! A� adaptation steps per insertion"b adaptation parameter for best-matching unit"n adaptation parameter for neighboring cells� threshold for cell removalP(�) probability distribution of input signals� decrease parameter for resource variablesNc set of direct neighbors of a cell cFc Voronoi �eld of cell ct true data dimensionality~t estimate for tjFcj n-dimensional volume of Fc� n-dimensional input signal� m-dimensional output signalm dimension of the output vector space for supervised learning(�; �) I/O-pair (for supervised learning)o m-dimensional vector of output unit activations�c resource variable of cell c (can contains, e.g., signals, quantization error, classi�cation error)L layer of Gaussian units in RBF-networksDc(�) activation of Gaussian unit chc relative signal frequency of cell c.~pc estimate of the probability density near wcp̂c estimate of the normalized probability density near wc�x = y short-cut for xnew = xold + ywoutc m-dimensional vector of weights from cell c to the output unitswic weighted connection from Gaussian unit c to output unit ik � k Euclidean vector norm
32
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